GUANGZHOU TESTING CENTER OF INDUSTRIAL MICROBIOLOGY
TEST REPORT

Date Received: November 17, 2017
Date Analyzed: December 06, 2017

<table>
<thead>
<tr>
<th>Name of Sample</th>
<th>TEQOYA TIP 24</th>
<th>Source of Sample</th>
<th>Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicant</td>
<td>TEQOYA SAS</td>
<td>Client</td>
<td>Liu Zheng</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>TEQOYA</td>
<td>Brand</td>
<td>TEQOYA</td>
</tr>
<tr>
<td>Type and Specification</td>
<td>______</td>
<td>Quantity of Sample</td>
<td>1PCS</td>
</tr>
<tr>
<td>Date of Production</td>
<td>______</td>
<td>Sample description</td>
<td>Machine (Black)</td>
</tr>
<tr>
<td>Batch Number</td>
<td>______</td>
<td>Packing of Sample</td>
<td>In box</td>
</tr>
</tbody>
</table>

Sample Picture

Standard and Methods: <Technical Standard For disinfection> 2002-2.1.3 Air disinfection effect evaluation test

Items of Analysis: Air Disinfection Examination (Natural bacteria in air)

Remarks: ---

To be continued
Method for testing air disinfection (Natural Bacteria):
1. Test equipments:
 1) Culture media: NA
 2) Sampling equipment: six-stage sieve sampler
2. Test conditions:
 1) The volume of the test chamber: 10 m³
 2) Environment temperature: (20～25) °C
 3) Environment humidity: (50～60)% RH
3. Operation conditions of the machine:
 Set the switch to position “Electricity to boot”.
4. Test Procedure:
 1) The equipments are placed in the test chamber, close the door, and collect natural bacteria by six-stage sieve sampler, as the original bacteria count (positive control).
 2) The air cleaner is adjusted to the highest air cleaning mode setting for test, operating the unit for 120 min. The natural bacteria are collected by six-stage sieve sampler, as the bacteria count after treatment.
 3) In sampling, place the sampling equipment in the center of test chamber at the height 1.0 meter.
 4) Choose 2 NA plates (the same batch) as the negative control, and culture them on the same condition as the samples.
 5) The tests repeat three times, and calculate the killing rate respectively.

2. Killing Rate \(K_t(\%) = \frac{V_0 - V_t}{V_0} \times 100 \)

Where: \(V_0 = \) Original Bacteria Count; \(V_t = \) Bacteria Count after Treatment.

<table>
<thead>
<tr>
<th>Number of Sample</th>
<th>Test Bacteria</th>
<th>Test time (min)</th>
<th>Test Number</th>
<th>Original Bacteria Count (V_0) (cfu/m³)</th>
<th>Bacteria Count after Treatment (V_t) (cfu/m³)</th>
<th>Killing Rate (K_t) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KJ20171795-1 Natural bacteria in air</td>
<td>120</td>
<td>1</td>
<td>2.75×10⁴</td>
<td>1.52×10³</td>
<td>94.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3.51×10⁴</td>
<td>2.23×10³</td>
<td>93.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2.41×10⁴</td>
<td>1.14×10³</td>
<td>95.27</td>
</tr>
</tbody>
</table>

报告结束/End of report